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Environmental limits of animal life are invariably revised when the
animals themselves are investigated in their natural habitats. Here we
report results of a scientific mountaineering expedition to survey the
high-altitude rodent fauna of Volcán Llullaillaco in the Puna de Ata-
cama of northern Chile, an effortmotivated by video documentation of
mice (genus Phyllotis) at a record altitude of 6,205m. Among numerous
trapping records at altitudes of >5,000 m, we captured a specimen of
the yellow-rumped leaf-eared mouse (Phyllotis xanthopygus rupestris)
on the very summit of Llullaillaco at 6,739 m. This summit specimen
represents an altitudinal world record for mammals, far surpassing all
specimen-based records from the Himalayas and other mountain ranges.
This discovery suggests that we may have generally underestimated the
altitudinal range limits and physiological tolerances of small mammals
simply because the world’s high summits remain relatively unexplored
by biologists.
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The environmental limits of animal life have always fascinated
biologists, and new discoveries about organismal adaptability

continually force us to revise our assumptions about such limits.
At high altitude, endothermic vertebrates are forced to cope with
a combination of environmental stressors, the most salient of
which are the reduced partial pressure of oxygen (hypoxia) and
freezing temperatures. Nonetheless, numerous alpine mammals
and birds have evolved physiological capacities for meeting such
challenges (1–3) and are capable of surviving at surprisingly lofty
altitudes so long as food is available.
Upper altitudinal limits of wild mammals are generally thought to

fall in the range 5,200 m to 5,800 m above sea level (4–6). Such limits
are surely dictated by food availability in addition to physiological
capacities for tolerating hypoxia and extreme cold. The altitudinal
range limits of alpine birds and mammals are often not known with
certainty, due to scanty survey data in inaccessible highland regions,
and many published records in the scientific literature are surpassed
by sightings reported by members of mountaineering expeditions.
Motivated by reported sightings of mice living at record altitudes,

we organized a scientific mountaineering expedition to survey the
rodent fauna of Volcán Llullaillaco and the surrounding altiplano/
Puna de Atacama of northern Chile. Llullaillaco (6,739 m) is the
second-highest active volcano in the world and straddles the border
between Chile and Argentina. Our trapping results challenge cur-
rent thinking about physiological and ecological constraints on the
altitudinal range limits of mammals and indicate that the world’s
highest summits are not as barren as once believed.

Results and Discussion
On a 2013 mountaineering expedition to Volcán Llullaillaco, M.F.
and T.B. filmed a mouse (identified as Phyllotis spp.) scurrying across
a snowfield at 6,205 m above sea level (24°43.052′S, 68°33.323′W)
(Movie S1), an altitude that exceeds existing records for wild mam-
mals. This sighting motivated a subsequent high-altitude trapping
expedition in February 2020, led by J.F.S., M.Q.-C., and G.D. During
this expedition, we live-trapped rodents from ecologically diverse
sites on the altiplano and puna spanning >4,300 m of vertical
relief (Fig. 1). On Volcán Llullaillaco, we live-trapped rodents in

and around Aguadas de Zorritas (4,140 m to 4,360 m), base camp
atRutaNormal (4,620m), base camp at Ruta Sur (5,070m), high camp at
Ruta Sur (5,850 m), and the volcano summit (6,739 m). In total, we col-
lected museum voucher specimens of 80 mice representing four
species: Andean altiplano mouse (Abrothrix andina), altiplano laucha
(Eligmodontia puerulus), yellow-rumped leaf-eared mouse (Phyllotis
xanthopygus), and Lima leaf-eared mouse (Phyllotis limatus). We
collected Eligmodontia puerulus and Abrothrix andina at maximum
altitudes of 4,099 and 4,620 m, respectively; these altitudes ap-
proximate or exceed previous records for these species (7, 8). Our
altitudinal records for P. limatus and P. xanthopygus (5,070 and 6,739 m,
respectively) far exceed existing records for both species (9–11).
We captured the 6,739-m specimen of P. xanthopygus on the very

summit of Llullaillaco (24°43.235′S, 68°32.208′W) (Movie S2). This
summit specimen represents an altitudinal world record for mam-
mals, far surpassing all specimen-based records from the Himalayas
and elsewhere in the Andes. An extensive review of published accounts
indicates that the large-eared pika,Ochotonamacrotis (Lagomorpha),
was the previous record holder. Although the highest specimen-
based records for this species are from 5,182 m in the Himalayas
(US National Museum 198648 and 198649), credible sightings at
6,130 m were reported from a 1921 Everest expedition (12).
Phylogenetic analysis of cytochrome b (cytb) sequences cor-

roborated the species identifications of our record specimens of
P. limatus and P. xanthopygus and revealed close relationships
with conspecific specimens from elsewhere in northern Chile,
northern Argentina, and southern Peru (Fig. 2). The summit
specimen (GD 2097) groups with those of previously collected
altiplano specimens of P. xanthopygus rupestris (13). Moreover,
the cytb haplotype of this summit specimen is identical to that of
another P. x. rupestris specimen (LCM1780) collected at Toco-
nao, Chile, a 2,500-m locality ca. 180 km NNE of Volcán Llul-
laillaco. Similarly, two other specimens of P. x. rupestris collected at
different altitudes (GD 2082 at 4,406 m and GD 2095 at 5,069 m)
on Volcán Lullaillaco share identical cytb haplotypes with a speci-
men (LCM1737) collected at the mouth of the Loa River on the
Pacific coast, ca. 400 km NW of Volcán Lullaillaco. Thus, not only
does P. x. rupestris range from sea level to the crest of the Andean
Cordillera at 6,739 m (the broadest altitudinal distribution of any

Author contributions: J.F.S., M.Q.-C., and G.D. designed research; J.F.S., M.Q.-C., and G.D.
performed research; J.F.S., T.B., M.F., S.J.S., and G.D. contributed new reagents/analytic
tools; J.F.S., M.Q.-C., J.C.O., and G.D. analyzed data; J.F.S. and G.D. wrote the paper; J.F.S.,
M.Q.-C., and G.D. performed field work; and T.B. contributed resources.

The authors declare no competing interest.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).

Data deposition: DNA sequences have been deposited in GenBank (accession nos.
MT183676–MT183689). All study data are included in the article and supporting
information.
1J.F.S. and M.Q.-C. contributed equally to this work.
2To whom correspondence may be addressed. Email: jstorz2@unl.edu or guille.delia@gmail.
com.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2005265117/-/DCSupplemental.

First published July 16, 2020.

www.pnas.org/cgi/doi/10.1073/pnas.2005265117 PNAS | August 4, 2020 | vol. 117 | no. 31 | 18169–18171

EV
O
LU

TI
O
N

BR
IE
F
RE

PO
RT

http://orcid.org/0000-0001-5448-7924
http://orcid.org/0000-0002-2321-7777
http://orcid.org/0000-0001-7938-4083
http://orcid.org/0000-0002-9319-0573
http://orcid.org/0000-0003-3624-1677
http://orcid.org/0000-0001-5920-3935
http://orcid.org/0000-0001-7173-2709
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005265117/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.2005265117/video-2
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2005265117&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/nuccore/MT183676
https://www.ncbi.nlm.nih.gov/nuccore/MT183689
mailto:jstorz2@unl.edu
mailto:guille.delia@gmail.com
mailto:guille.delia@gmail.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005265117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2005265117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.2005265117


mammal), but individuals found at opposite extremes of this vast
range share identical cytb haplotypes.
Our capture of P. x. rupestris on the summit of Llullaillaco suggests

that we may have generally underestimated the altitudinal range
limits and physiological tolerances of small mammals simply because
the world’s high summits remain relatively unexplored by biologists.
The upper range limits of many vertebrate taxa are not precisely
demarcated, and putative altitudinal records for many taxa exist as
unverified sightings or reports in mountaineering expedition ac-
counts rather than as voucher specimens in museum collections.
Our discoveries prompt many evolutionary and ecological

questions. Given the exceptionally broad altitudinal range of P.
xanthopygus, have mice from the high Andes evolved genetically
based adaptations to hypoxia that distinguish them from lowland
conspecifics? To what extent is the ability to tolerate such a

broad range of environmental conditions attributable to acclimati-
zation (physiological plasticity)? Given that mice inhabiting the
upper reaches of Llullaillaco are living >2,000 m above the upper
limits of green plants, what are they eating? Such questions can be
answered by future mountaineering expeditions in the Humboldtian
tradition that combine high-altitude exploration and scientific discovery.

Materials and Methods
Specimen Collection. We captured mice using Sherman live traps, except for the
specimen from the Llullaillaco summit, which was captured by hand (Movie S2).We
killed mice in the field and prepared them as museum specimens, all of which are
housed at the Colección deMamíferos of the Universidad Austral de Chile, Valdivia,
Chile. Tissue samples from Argentinian and Peruvian specimens were obtained as
loans from the collections of Centro Nacional Patagónico, Puerto Madryn, Argen-
tina, and Louisiana State University Museum of Natural Science, Baton Rouge, LA.

Fig. 1. High-altitude survey. Map showing collecting localities in the altiplano and Puna de Atacama (A), including Volcán Llullaillaco (B), Región de
Antofagasta, Chile. (C) View of Volcán Llullaillaco (6,739 m [24°43.235′S, 68°32.208′W]) from the west.
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All mice were collected in accordance with permissions to J.F.S. from the
following Chilean government agencies: Servicio Agrícola y Ganadero
(Resolución extenta #209/2020), Corporación Nacional Forestal (Autorización
nos. 171219 and 1501221), and Dirección Nacional de Fronteras y Límites del
Estado (Autorización de Expedición Cientifica #68). All mice were live-
trapped and handled in accordance with protocols approved by the In-
stitutional Animal Care and Use Committee at the University of Nebraska
(Project ID 1919). Argentinian samples were exported under Permit #3938/03
from the Dirección de Fauna y Flora Silvestres.

DNA Sequencing. We sequenced the first 801 base pairs of the mitochondrial
gene cytb from Phyllotis specimens collected from Volcán Llullaillaco and
adjacent regions of Chile and Argentina.

Phylogenetic Analysis. We integrated newly generated sequences into a
dataset containing GenBank sequences from P. xanthopygus, Phyllotis bonariensis,
Phyllotis caprinus, and P. limatus. After excluding redundant sequences, the final

matrix consisted of 76 sequences from 18 recognized species of Phyllotis. We used
Auslicomys pictus and Loxodontomys micropus as outgroups. Using the HKY+I+G
substitution model, we estimated the Maximum Likelihood cytb phylogeny with
IQ-TREE (14); perturbation strength = 0.5, and the number of unsuccessful itera-
tions = 100. Branch support was estimated via 1,000 bootstrap replicates.

Data Availability. All DNA sequences are available in GenBank (MT183676 to
MT183689).
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Fig. 2. Phylogeny showing the placement of haplotypes of high-altitude Phyllotis specimens from Volcán Llullaillaco. Maximum likelihood tree obtained
from analysis of 76 cytb gene sequences from specimens of 18 species of Phyllotis. Numbers denote bootstrap support values for the adjacent nodes; only
values for species clades and relationships among them are shown. Inset shows details of the clades of P. x. rupestris and P. limatus. Branch tips are labeled
with GenBank accession number and, when available, museum catalog number. Labels for specimens from Volcán Llullaillaco are shown in color, and the
altitudes of collection localities are indicated.
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